La nube ha llegado para quedarse, lo cual impulsa las arquitecturas híbridas azure-onpremise. En esta sesión conoceremos las posibilidades de la nube para extender nuestras arquitecturas con SQL Server.

Ya tienes la presentación disponible aquí:

[slideshare id=79518503&doc=300-arquitecturashbridascloudon-premise-170907094813]
  1. SOLIDQ SUMMIT MADRID 2017 #SQSummit17 Rubén Garrigós | Mentor
  2. SOLIDQ SUMMIT MADRID 2017 • +500h de trabajo • Clases 100% ONLINE en directo • Proyecto fin de máster real para tu empresa • Tutorías bajo demanda • Laboratorios virtuales guiados paso a paso • Invitación 1 día al SolidQ Summit Madrid • Te ayudamos en tus proyectos de BI & Analytics CONTENIDOS • BI & Analytics Overview • Data Warehousing y Modelo Dimensional • Obtención de datos. ETL e Integración • Soluciones Analíticas • Análisis y Visualización de la información • Proyecto Fin de Máster “Con la evolución de los tiempos, es imprescindible estudiar todo lo que tiene que ver con real-time, analytics y el mundo de los datos. Por lo que, consideré que tener formación en BI me podría ser muy útil y me venía muy bien personalmente, porque nuestro sistema trata con muchísimas transacciones y muchísima carga y ‘el relacional’ ya se nos estaba quedando pequeño. El máster nos dio una visión bastante general de cómo implementar un proyecto y gestionarlo tú mismo y cómo ver las soluciones de distintas maneras. Aunque tenía mis dudas de hacer una formación online, la valoración es bastante positiva, las clases son muy interactivas y al final salió todo muy bien.” Adolfo Gabriel VP Software Development, Payvision Máster en BI & Analytics Alumni ¡Plazas Limitadas! Más información: http://www.solidq.com/es/masterbi CONTENIDOS • BI & Analytics Overview • Data Warehousing y Modelo Dimensional • Obtención de datos. ETL e Integración • Soluciones Analíticas • Análisis y Visualización de la información • Proyecto Fin de Máster
0 Shares:
Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

You May Also Like

Más ejemplos de validación de datos con T-SQL

¿Cómo validas que los datos están proporcionando la información correcta? La validación es un aspecto imprescindible en tus proyectos. ¡Toma nota! A veces podemos realizar conteos a tablas muy grandes que llevan mucho tiempo, o necesitamos comprobar si existe una tabla o un campo dentro de una tabla, o poder comparar los resultados de 2 consultas distintas. Hoy veremos ejemplos de estos casos empleando diferentes técnicas y ejemplos prácticos con T-SQL para detectar posibles errores y su validación.

Expresiones, parámetros y funciones en Azure Data Factory

Hay ocasiones, cuando estamos construyendo pipelines con Azure Data Factory, que queremos repetir patrones para extraer y procesar la información cambiando de manera dinámica, en tiempo de ejecución, valores, orígenes/destinos de los datasets, incluso los mismos linked services. Esto es posible mediante el uso de parámetros, expresiones y funciones. Vamos a ver cómo implementarlo con un ejemplo práctico en el que se nos plantea el siguiente supuesto. Se nos ha pedido que extraigamos todos los días los datos del día anterior de distintas tablas del DW a ficheros en un blob storage que además se nombre como la tabla de origen. Si no pudiéramos utilizar contenido dinámico tendríamos que crear dos datasets (uno de origen y otro de destino) y añadir una actividad de copia por cada tabla a exportar.

Introducción al Text Mining con R: Parte I

En la entrada de hoy vamos a echarle un ojo a algunas herramientas para realizar análisis de texto utilizando R. Tal y como describe el titulo, este post es introductorio, por lo que se basa en la técnica ‘Bag of words’, es decir, no existe análisis semántico del texto, sino que se trabaja con palabras.