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Abstract—Auditing is a key part of the security infrastructure
in a database system. While commercial database systems provide
mechanisms such as triggers that can be used to track and log
any changes made to “sensitive” data using UPDATE queries,
they are not useful for tracking accesses to sensitive data using
complex SQL queries, which is important for many applications
given recent laws such as HIPAA. In this paper, we propose the
notion of SELECT triggers that extends triggers to work for
SELECT queries in order to facilitate data auditing. We discuss
the challenges in integrating SELECT triggers in a database
system including specification, semantics as well as efficient
implementation techniques. We have prototyped our framework
in a commercial database system and present an experimental
evaluation of our framework using the TPC-H benchmark.

I. INTRODUCTION

A key component of a database security infrastructure is
an auditing system. An important class of auditing is data
auditing that requires the careful monitoring of accesses to
“sensitive” data. The objective of the data auditing system
is to correlate the operations executed on a database with
specific data items in the database. One of the basic mech-
anisms provided by most commercial database systems for
data auditing is the notion of triggers, which enables row-
level auditing of DDL/DML statements. Using triggers, an
administrator can handle important data auditing tasks such
as: 1) finding updates that change a salary value by more than
50%, and 2) maintaining a history of changes to a sensitive
column (e.g., salary).

However, there are many scenarios that require row-level
auditing support for SELECT queries (that go beyond the
functionality offered by triggers today). The key functionality
required is to check if a SQL query “accessed” some sensitive
data. In fact, such functionality is required by laws such as
HIPAA [15]. A common source for data breaches are insider
attacks, where the insider gets information about sensitive data
by running SQL queries and examining their results.

Data auditing for SQL queries has been studied in previous
research [1], [9], [14] — the goal is to answer the following
question: given a query (or update) statement and a set of
individuals, find the subset of individuals whose data was
“accessed” by the query (in general, sensitive data can be any
information stored in the database rather than individuals). One
of the challenges addressed by prior work on data auditing is
to define what it means for a query to access the sensitive
data corresponding to an individual. Briefly, the approach

generally adopted is to use ideas related to the body of work
on data provenance [4] to identify when an individual’s data
contributes substantively to the query result.

Prior work on data auditing for SQL queries assumes an
offline architecture where the audit log records all SQL queries
that were executed and the analysis of whether a particular
query accessed some sensitive data is carried out at a later
point in time. Offline analysis (e.g., [5], [9]) however can be
expensive because it potentially requires efficient access to
previous states of the database, either requiring an “as-of”
querying capability [8] or a rollback of the database state
using the database log. As a result, such functionality can
be cumbersome to use in certain scenarios such as those
pertaining to HIPAA as shown in the following example.

Example 1.1: The United States Health Insurance Porta-
bility and Accountability Act (HIPAA) enables every patient
to demand from their health care provider the name of ev-
ery entity to whom her information has been revealed. For
example [1], if a patient Alice receives advertisements for
diabetes tests, she can check whether her health care provider
has released the information that she is at risk of developing
diabetes. In order to comply with HIPAA, the health care
provider is required to maintain a tamper-proof audit log of
all SQL queries issued to the system; the log can be used
to identify all entities that accessed Alice’s health record. In
order to provide such functionality when Alice makes such
a request, a security admin has to analyze the audit log to
check for queries that “accessed” Alice’s record. This check
may involve a rollback of the database to the state that existed
when the query was originally executed, as well as several
query executions in order to compute this result (in general,
for complex queries, computing if a query accessed sensitive
information requires re-executing the query — see Section II
for details).

Given that triggers are a well-known interface for appli-
cation development and are already used for auditing sce-
narios pertaining to INSERT/DELETE queries, it is natural
to consider extending triggers to SELECT queries for data
auditing. For the scenario discussed in Example 1.1, a security
admin can install a SELECT trigger that keeps track of
which queries access Alice’s record as the queries execute.
By piggybacking on the database instance in which the query
executes, such functionality avoids the need to rollback the
database. However, for Example 1.1, since we do not know



in advance which patient will request her record, we need the
ability to audit for all patients - thus SELECT triggers must
provide the ability to scale to a large number of tuples.

SELECT triggers also open up the possibility of real-
time feedback on access to sensitive information which is
intrinsically interesting and can enable addressing scenarios
such as: 1) finding users that have accessed more than a given
number of patient records with a particular disease, and 2)
finding all patient records accessed by each doctor last week
ordered by the number of patients accessed.

A. Challenges
The focus of this paper is to design an efficient framework

that integrates SELECT triggers in a database system.
Extending the notion of triggers to work for SELECT queries
raises a variety of interesting challenges.

Specification/Semantics: Triggers are declaratively speci-
fied in a query independent manner to perform an action when
specific data items are accessed. Unlike INSERT/DELETE
queries where it is immediately apparent when to execute a
trigger (e.g., upon inserting a row), it can be more subtle to
determine when a SELECT trigger should be executed as the
following example demonstrates.

Example 1.2: Consider the following two queries with
which a user can infer if a particular patient Alice has cancer.
SELECT * FROM Patients P, Disease D
WHERE P.PatientID = D.PatientID
AND Name = ‘Alice’
AND Disease = ‘cancer’

SELECT 1 FROM Patients
WHERE exists
(SELECT * FROM Patients P, Disease D

WHERE P.PatientID = D.PatientID
AND Name = ‘Alice’
AND Disease = ‘cancer’)

The queries illustrate it is possible for a row to influence
the output of a query even if the row is only a part of some
subexpression in a SQL query. Triggering events based on the
output of a query would not work for the second query in the
example.

One can consider semantics for triggering events based on
READ locks acquired by a transaction, however this approach
can result in a large number of false positives, where a row is
incorrectly marked as having been accessed by the query (for
example, consider a join query where most tuples are filtered
by the join predicate, if we base our semantics on READ locks
we would deem all tuples from both tables being joined as
accessed). Thus, more robust definitions are needed to define
what it means for a query to access data.

Prior work (e.g., [1], [9], [14]) has defined the semantics
for data auditing using ideas related to data provenance [4] to
identify when an individual’s data contributes substantively to
the query result. However, definitions for data auditing based
on provenance (see Section II for an overview) are “heavy-
weight” in that they either require the propagation of non-
trivial state in the form of annotations or require non-trivial
additional processing including materialization of intermediate

results. Thus, directly integrating such techniques as part of a
triggering system is challenging and adds significant overhead
to query execution.

Efficient Implementation: Since the existing techniques
for data auditing are “heavy-weight”, we need to relax the
semantics such that it enables a more light-weight framework
for SELECT triggers. We propose a design where the system
provides one-sided guarantees - there are no false negatives,
where a row is incorrectly marked as having not been accessed
by the query (which is important for the case of data auditing).
For the class of select-join (SJ) queries, we guarantee the same
result as the offline system, but yield false positives for more
complex queries (see Section III). To ensure correctness, the
offline system must verify all queries that are thought to access
sensitive data. Even though the offline system is still required
in the auditing infrastructure, SELECT triggers can serve as
an important filter to reduce the number of queries that the
offline system must process and therefore improves the overall
auditing performance.

Interestingly, we can enable the above semantics with a
light-weight mechanism termed audit operators that are sim-
ilar to “data viewers” that do not modify the logic of a query
plan but “sniff” the records flowing between the different
relational operators. Just as standard database triggers check
conditions and perform actions during data updates, audit
operators check intermediate records generated by a query
execution plan for access to sensitive information, and perform
actions for the data that are accessed. Similar to triggers, the
audit operator does carry a cost and needs to be used with care.
But as a mechanism, it affords a reasonable balance between
query execution efficiency and the ability to monitor access to
sensitive data online.

While the mechanism of “data viewers” has been proposed
in prior work for query debugging such as SQL Server Integra-
tion Services [11] and Inspector Gadget [16], the above query
debugging frameworks operate directly on dataflow graphs that
do not permit a query-independent specification, which is nec-
essary for SQL. As with the case of existing triggers, we adopt
a declarative approach where the programmer merely specifies
what the sensitive data are through an audit expression. We
let our system determine the placement of the audit operator,
which leads to several challenges: 1) where should the operator
be placed? and 2) are all the edges where operators can be
placed meaningful from the point of view of provenance which
has been proposed in the past for offline auditing? To address
these challenges, we formulate an operator placement problem
that inserts audit operators into query plans.

B. Contributions

To summarize, we study the novel problem of extending
the notion of triggers to work for SELECT queries, which
has important applications for data auditing. We discuss the
specification and semantics of SELECT triggers (Section II)
and describe a low overhead mechanism termed an audit
operator for enabling this functionality. In order to retain
a declarative interface, the system needs to place an audit
operator appropriately in a query plan - we study the audit



operator placement problem in Section III. We have proto-
typed our framework by modifying a commercial database
system (Microsoft SQL Server). We discuss the key extensions
required to both the query optimizer and the query execution
engine that are required to support the audit operator in Section
IV. Our experimental results (Section V) on queries from the
TPC-H benchmark [18] indicate that SELECT triggers attain
a low false positive rate and can scale to a large number
of individuals/tuples for a small additional overhead - for
instance, we can audit a large number of individuals (around a
million customers in the TPC-H benchmark) at an additional
overhead of 2%.

II. SELECT TRIGGERS SPECIFICATION

Traditionally triggers are configured to automatically exe-
cute code in response to INSERT, UPDATE and DELETE
commands on a database. For example, triggers are commonly
used to ensure data integrity, track changes and replicate
data when INSERT commands are executed. This framework
works well because it is immediately apparent when rows
are inserted, updated or deleted. Unfortunately, SELECT com-
mands (i.e., queries) are currently not part of the SQL trigger
standard.

In this paper, we extend triggers to SELECT commands.
Just like INSERT, UPDATE and DELETE triggers, it is
necessary to understand when a trigger should execute and
what action they should perform. For this work, we consider
the following query-independent specification:

on ACCESS to <SENSITIVE DATA> do <ACTION>

During query execution, the system records accesses to
the sensitive data and stores this information in the query’s
ACCESSED internal state. The ACCESSED internal state
is a per-query, in-memory relation that maintains access
information and can be used by the trigger’s action. This
internal state is similar to SQL’s use of the OLD and NEW
variables for UPDATE triggers to reference previously existing
or newly created data. After the query completes, the action
is executed. The action takes the form of an SQL/T-SQL
fragment, can reference the query’s ACCESSED internal state
and is executed as its own system transaction. The action
executes even if the query is aborted to account for queries that
read a subset of the result. Like traditional triggers, SELECT
triggers are cascading. As a result, a SELECT trigger’s action
can trigger an UPDATE trigger, which in turn can trigger other
SELECT triggers.

We note that the described semantics for SELECT triggers
are specific for the data-auditing problem. However, it is easy
to imagine other uses of SELECT triggers that may require
alternative semantics. For example, an administrator may wish
to configure SELECT triggers to execute before the query
result is returned to warn users that they are accessing sensitive
data. We leave these variations to future work.

The challenge is then to define how to specify sensitive
data and what it means to access data. The rest of the section
describes audit expressions as a means to specify the sensitive
data and the provenance semantics used to determine when
data are accessed.

A. Audit Expression

Sensitive information is specified in the form of an au-
dit expression. Just like SQL, audit expressions provide a
declarative format to specify data and the database system
determines if that data are accessed. In this paper, we restrict
audit expressions to queries with simple predicates that do not
involve subqueries, and joins are limited to key-foreign key
relationships (we currently impose these restrictions in order
to maintain the privacy guarantees of the auditing system as
discussed in [9]). Audit expressions are structured as follows.

CREATE AUDIT EXPRESSION <NAME> AS
SELECT <SENSITIVE COLUMNS>
FROM <TABLES T, ..., Tn>
WHERE <PREDICATE>
FOR SENSITIVE TABLE <T>,

PARTITION BY <KEY>

An audit expression’s sensitive table specifies the table
to monitor for accesses, and the associated partition-by key
specifies what information should be stored in the ACCESSED
internal state (such as the tuple’s primary key). We refer to
values from the partition-by key as IDs. For ease of exposition,
we restrict audit expressions to a single sensitive table (the
sensitive columns must also be from this sensitive table).
However, it is possible to audit the broader class of audit
expressions described above.

Example 2.1: Consider a health care database with tables
Patients(PatientID, Name, Age, Zip) and Disease(PatientID,
Disease). Suppose that we wish to specify that Alice’s records
are sensitive. This can be done using the following audit
expression:
CREATE AUDIT EXPRESSION Audit_Alice AS
SELECT *
FROM Patients
WHERE Name = ‘Alice’
FOR SENSITIVE TABLE Patients,

PARTITION BY PatientID

Example 2.2: Similarly, suppose that we wish to specify
that the personal information pertaining to all patients suffer-
ing from cancer is sensitive. We can do so by specifying the
following expression.
CREATE AUDIT EXPRESSION Audit_Cancer AS
SELECT P.*
FROM Patients P, Disease D
WHERE P.PatientID = D.PatientID

AND Disease = ‘cancer’
FOR SENSITIVE TABLE Patients,

PARTITION BY PatientID

B. Data Access

The basis for data access semantics is to define what it
means for a query to access a particular record. The rich
body of work on data privacy [3] has conclusively shown
that privacy can be compromised in subtle ways using innocu-
ous looking queries such as aggregates. Therefore, simplistic
definitions such as examining the query output for sensitive



data are inadequate from a privacy point of view. Slightly
more complicated approaches that compare query selection
conditions to audit expression selection conditions are not
effective either because they frequently classify queries as
having accessed sensitive data even though the data did not
influence the query’s computation (see Example 6.1 for further
discussion).

Instead, prior work [1], [5], [9], [13], [14] has relied on the
notion of data provenance to define data access. The idea is to
define a record as accessed if it influences the query output.

Definition 2.3: [1] Given a database instance D and a
query Q, a tuple t in the sensitive table T is said to influence
Q if deleting t from T changes the result of Q. 2

Example 2.4: Consider the queries from Example 1.2. Sup-
pose that there is a patient named Alice in the database who
is suffering from cancer. Then Alice’s record is accessed by
the query because deleting the tuple would change the query
result, even though Alice’s record is not always contained in
the query result. 2

We note that the notion of a tuple influencing a query is
based on a definition of data provenance, namely the notion
of a counter-factual record [10]. There, the goal is to find the
set of tuples τ such that after removing τ from the database,
the database is in a state where inserting/removing tuple t
removes tuple r from the query result. However, the notions of
a counter-factual record and determining if a tuple is accessed
are not identical since we are not interested in the provenance
of any one output record; rather our goal is to find all input
records that influenced the output overall.

Before we can define what it means to access data, we
must consider which columns are accessed by the query. We
say that a query Q accesses a set of columns if it cannot
be equivalently rewritten to exclude the columns. Combining
this statement with Definition 2.3, we obtain the following
definition for sensitive data access.

Definition 2.5: Given a database instance D, a query Q and
an audit expression E, a tuple t in the output of E is said to
be accessed by Q if: (1) Q accesses the sensitive columns in
the definition of E and (2) tuple t influences Q.

Checking if Q accesses a set of columns is straightforward.
Therefore, for ease of exposition, in the rest of the paper we
assume that all columns in the relation underlying the audit
expression are sensitive while noting that all techniques extend
in a straightforward manner to allow a subset of columns to
be sensitive. In the case of UPDATE and DELETE commands
(which read information before modifying it), we revert to
the traditional trigger semantics to determine when data are
accessed, which is consistent with Definition 2.5.

Previous work [9], [13], [14] has formally analyzed the pri-
vacy guarantees yielded by the above definition. One limitation
of a system that applies the definition is that it is susceptible to
negative disclosures because an attacker can learn about data
not in the database without executing a trigger [9]. Another
limitation is that accesses may be missed when duplicates

are eliminated in the query (i.e., set semantics). For example,
consider the database with two patients named Alice that have
cancer; if the queries in Example 1.2 were modified to find
the distinct names of patients with cancer, then removing
one of their records would not change the query result. We
acknowledge these limitations, but note that they are inherent
when supporting the generality of SQL.

It is important to note that a simple mechanism to check if a
tuple influences a query is to execute the query twice, once on
the database instance with the tuple and once without it, and
then compare the results. While this is a general mechanism
that is applicable for all SQL queries, it is not feasible for
triggers because it adds significant overhead.

C. Trigger Actions and Applications
There are multiple practical applications of SELECT trig-

gers for data auditing. The simplest example is the action of
writing an audit log entry for each sensitive piece of data that
is accessed. Recall that the ACCESSED internal state stores
information about the tuples that were accessed by the query.

CREATE TRIGGER Log_Alice_Accesses
ON ACCESS TO Audit_Alice AS
INSERT INTO Log
SELECT now(), userID(), sql(), PatientID
FROM ACCESSED

Each log entry records the time when the query was
executed, the user who executed the query, the query’s SQL
text and the PatientIDs that were accessed, which is Alice’s
ID for the given audit expression (now(), userID() and sql()
are database methods). The ON ACCESS TO clause specifies
the audit expression (i.e., the sensitive data) and the associated
attributes that are available from the ACCESSED internal state
for the trigger’s action (i.e., the partition-by key).

The trigger’s action executes as a system transaction and
retains the locks acquired by the query for the partition-by
key to ensure that the recorded access information is consistent
with the database state when the query was executed. However,
other database state can change in the interim between the
access and action executing. Note that this is similar to the case
for traditional triggers (e.g., with AFTER INSERT semantics).

In some cases, writing every PatientID may be excessive.
Instead, an administrator may want to know more general
information about what data are accessed. For example, sup-
pose the administrator wants to monitor the set of departments
associated with the cancer patients whose data are accessed.
This action can be expressed as follows using the existing table
Departments(PatientID, DeptID).

CREATE TRIGGER Log_Cancer_Dept_Accesses
ON ACCESS TO Audit_Cancer AS
INSERT INTO Log
SELECT DISTINCT now(), userID(), sql(),
D.DeptID

FROM ACCESSED A, Departments D
WHERE A.PatientID = D.PatientID

SELECT triggers can be combined with other triggers to
produce more sophisticated systems. For example, SELECT
triggers that write to the log can be combined with an INSERT
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Fig. 1. Overview of the auditing system. The administrator initially creates
a SELECT trigger that specifies the sensitive data and the action to perform
when the data are accessed. As a query executes, accesses to the sensitive data
are recorded. After the query completes, the action executes. In the auditing
case, access information is written to the log for further analysis by the offline
auditing system. The remaining queries and associated accesses are not audited
further.

trigger to notify the administrator if a user accesses more than
ten sensitive patients in a single day as follows.

CREATE TRIGGER Notify
ON Log AFTER INSERT AS
IF (SELECT count(DISTINCT PatientID) > 10
FROM Log
WHERE Date = NEW.Date
AND UserID = NEW.UserID)
SEND EMAIL

III. MECHANISM FOR SELECT TRIGGERS

As described in Section II-B, the simplest way to determine
if sensitive data are accessed is to execute the query twice,
once with the sensitive tuple and once without it, and then
compare the results. Such a procedure is obviously not a
feasible implementation for SELECT triggers because of its
overhead. More sophisticated alternatives involve some form
of provenance computation. Prior work has approached the
problem either (1) by modifying query execution to add
annotations to each intermediate record, or (2) by defining
inverses for each operator so that at the end of execution,
the inversion of the operator can be invoked over the query
output to compute the provenance and determine if a sen-
sitive tuple influenced the result. However, both of the above
mechanisms impose a significant overhead on query execution
time. For instance, the state-of-the-art technique for computing
provenance for complex queries can incur an overhead of
up to 5x [6]. Accordingly, relying on prior work in data
provenance, the logical place to determine if data are accessed
is in an offline auditing system.

However, as mentioned in Section I, there are cases where
offline auditing is undesirable. For example, an administrator
may want to know immediately when sensitive data are
accessed rather than waiting days, if not weeks for the offline
system to run. This section outlines an alternative mechanism
to check if sensitive data are accessed in an online manner
that piggybacks on query execution.

A. Desiderata
Designing SELECT triggers to use the offline auditing

mechanisms is not feasible due to its overhead. Instead,

SELECT triggers must implement a “light-weight” notion of
data auditing. This light-weight approach is characterized by
its efficiency and generality to audit any input query. To attain
this efficiency, we allow for the possibility of false positives
(i.e., where a sensitive tuple is incorrectly marked as having
been accessed). Because of the possibility of false positives,
the offline auditing system is required to analyze potential
accesses to ensure correctness. Furthermore, this possibility
requires that SELECT triggers do not produce false negatives
(i.e., where a sensitive tuple is incorrectly marked as having
not been accessed and the SELECT trigger does not execute),
otherwise accesses to sensitive data could be missed.

Figure 1 illustrates the overall auditing system, and the
relationship between SELECT triggers and the offline auditing
system. SELECT triggers serve as a filter for the offline system
so that there are fewer queries and associated accesses to audit.
This design can significantly reduce the offline auditing effort.
While offline auditing performance gains are dependent on the
query workload and the trigger’s specification, it is easy to
imagine scenarios where SELECT triggers significantly reduce
the fraction of the tuples that need to be audited offline.

We summarize the desired properties of SELECT triggers
as follows.
• Efficient: SELECT triggers should implement a “light-

weight” notion of data auditing that is able to efficiently
determine if sensitive data are accessed. We allow for the
possibility of false positives to attain this efficiency.

• General: SELECT triggers should function correctly for
any SQL query no matter its complexity.

• No False Negatives: SELECT triggers should execute for
every sensitive tuple that is accessed.

Interestingly, these desired properties can be be met by a
fairly light-weight mechanism called an audit operator, which
is similar to a data viewer.

B. Audit Operator

An audit operator is a logical operator similar to a data
viewer that efficiently analyzes data passing through it during
query execution to determine if sensitive data are accessed.
Specifically, an audit operator takes as input an audit expres-
sion E and determines which tuples in the output of E are
accessed by the query. The audit operator acts similarly to a
relational filter operator in that it evaluates an IN predicate
with the audit expression. The major difference from a filter
operator is that instead of filtering tuples that do not satisfy the
predicate, audit operators act as a no-op and instead write the
partition-by information of tuples that satisfy the predicate to
the ACCESSED internal state, which can then be used by the
SELECT trigger’s action to write to the log (i.e., Section II-A).
We discuss one possible implementation in Section IV-A.

Audit operators can be placed between any nodes in a
query plan. The challenge is to place audit operators such
that they satisfy the desired properties described in Section
III-A. We refer to a query execution plan that includes an
audit operator as an instrumented query plan. Audit operator
placement can be subtle because it can lead to false positives
and false negatives, which we demonstrate with the following
two examples.
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Fig. 2. (a) Original query plan and (b) instrumented query plan with audit
operators.

Example 3.1: Consider the audit expression that tests if Al-
ice’s medical record is accessed (i.e., Example 2.1). Consider
the following query that is represented by the query plan in
Figure 2(a).
SELECT P.PatientID, Name, Age, Zip
FROM Patients P, Disease D
WHERE P.PatientID = D.PatientID
AND D.Disease = ‘flu’

Audit operators can be added to the query plan to test for
sensitive data at either of the edges shown in part (b). If a
tuple passes through an audit operator with data satisfying
the audit expression, then the partition-by key is recorded in
the ACCESSED internal state. For instance, consider the audit
operator that is placed at the output of the scan of the Patients
table in Figure 2(b). Assume there are two patients that satisfy
the predicate (Name = Alice) but only one of them has
the flu. The audit operator would add the PatientIDs of both
patients to the ACCESSED internal state, thus resulting in a
false positive. Note that an audit operator placed at the output
of the join would not generate this false positive. 2

It is important to note that different audit operator place-
ments can result in different false positive rates. However,
the number of false positives is independent of the physical
operators used in the query plan. From Example 3.1, a nested-
loop join or an index-intersection join would result in the same
number of false positives for the query.

A simple heuristic to construct an instrumented query plan
with minimal false positives is to place an audit operator
at the highest point in the query plan where the sensitive
data are accessible - certain database systems use a similar
algorithm for placing user defined functions (UDFs) in a query
plan. If we make the simplifying assumption that operators
typically only filter rows (i.e., no cross-products, non-foreign
key joins, etc.), then the highest-node heuristic ensures that
the number of false positives will be minimized since its
input will have the smallest cardinality among all candidate
edges where the audit operator can be placed. However, as
the following example demonstrates this heuristic can result
in an instrumented plan that produces false negatives.
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Fig. 3. Some audit operator placements produce false negatives.

Example 3.2: Consider a health care database and the query
plan shown in Figure 3 that finds which among the two
youngest patients has flu. Consider the top most edge in the
plan where PatientIDs are visible (which happens to be the
top of the query plan). Since Bob is among the two youngest
patients and does not suffer from flu, the record corresponding
to Bob does not flow past the top-most edge. Suppose that
the audit expression covers all patients. If we place the audit
operator at the top-most edge, the record corresponding to
Bob does not appear as part of the audit log. This leads to a
false negative — the record corresponding to Bob is accessed
by the above query, since deleting it changes the query result
(specifically, the output of the top-2 operator). 2

C. Audit Operator Placement

Next, we define the audit operator placement problem and
its associated properties for a single audit expression E. We
refer to the set of partition-by IDs generated by the audit
expression as sensitiveIDs. We refer to the set of partition-
by IDs generated by audit operators as auditIDs (in the
case when multiple audit operators are added to a query
plan, the ACCESSED internal state contains the union of all
auditIDs). We denote the set of partition-by IDs correspond-
ing to E that are accessed by a query as accessedIDs (as
determined by the offline auditing system). We define the
following properties of an instrumented query execution plan.

Definition 3.3 (False Positive): An instrumented query
plan for a query Q has a false positive if there exists an ID
such that ID ∈ auditIDs and ID /∈ accessedIDs (i.e.,
the audit operators generate an ID that the query does not
access).

Definition 3.4 (No False Negatives): An instrumented
query plan for a query Q has no false negatives if
accessedIDs ⊆ auditIDs (i.e., every accessed ID is
audited).

Audit Operator Placement Problem: Given a query execu-
tion plan and an audit expression E, the goal is to obtain an
instrumented execution plan P such that: (1) P produces no
false negatives. (2) Among all instrumented plans that produce
no false negatives, P has the fewest number of false positives.



A natural heuristic to the problem is to insert an audit
operator above the leaf-level node of the sensitive table in
the execution plan (i.e., the nodes that read data from tables
or indexes). If the sensitive table is instantiated multiple times
(e.g., self-joins), then one audit operator is placed above each
instance of the table. It is important to note that database op-
timizers push single table filters into the leaf node. Therefore,
this heuristic has the effect of placing audit operators above
both the read and the single table predicate; otherwise, this
approach would be equivalent to the READ locks discussed
in Section I. We can show that the leaf-node heuristic (unlike
the highest-node heuristic) guarantees no false negatives.

Claim 3.5: The Leaf-Node Heuristic generates an instru-
mented query plan that produces no false negatives.

Proof: Consider an ID ∈ accessedIDs. Irrespective of
the query execution plan, the corresponding tuple would have
been accessed at some leaf-level operator in the execution plan
and thus passed as an input to the audit operator immediately
above it in the plan and thus, ID ∈ auditIDs.

While the leaf-node heuristic guarantees no false negatives,
this heuristic can incur a large number of false positives. For
instance, in the query plan in Figure 2(b), if we assume that the
selection predicate on the Patients table and the join predicate
are independent and the join selectivity is 1%, then an audit
operator placed at the output of the Patients table can result
in a false positive rate of 99%.

1) Placement Algorithm: In order to improve the false
positive rate of the leaf-node heuristic, we use a placement
algorithm that is a refinement of it. The key idea is to
initially place the audit operator at the leaf-level nodes like
the leaf-node heuristic and then pull-up the audit operator
along the edges of commutative operators (e.g., selections,
joins, etc.) In contrast, the audit operator cannot be pulled
above non-commutative operators such as top-k operators. We
refer to this variant of the placement algorithm as the highest-
commutative-node heuristic.

Because audit operators are a variation of the filter operator
(but act as a no-op), we can use filter commutativity to pull-
up the audit operator. However, we note that the placement
algorithm is independent of the implementation of the op-
erator. Leveraging commutativity is essential in obtaining an
instrumented query plan that produces no false negatives. For
instance, consider Example 3.2 that showed that the highest-
node heuristic can produce false negatives — the query
included a top− k operator that is not commutative.

Claim 3.6: The Highest-Commutative-Node Heuristic gen-
erates an instrumented query plan that produces no false
negatives.

Proof: We present a proof sketch for the special case
where we are required to only place one audit operator. The
extension to the case when the query involves self-joins is
straightforward. For ease of exposition, we use the notation Q
to denote both a query and its execution plan.

Algorithm 1 Audit Operator Placement Algorithm
Input: Audit expression E and the query plan for query Q.
Output: Instrumented query plan for query Q.

1: for Each sensitive table T in the query plan do
2: Q.InsertAuditOperatorAboveTable(T)
3: end for
4: pulledUp = True
5: while pulledUp = True do
6: pulledUp = False
7: for Each audit operator A do
8: parentOperator = Q.parentOperatorOf(A)
9: if Commute(A, parentOperator) then

10: Q.pullOperatorAbove(A, parentOperator)
11: pulledUp = True
12: end if
13: end for
14: end while
15: Return the instrumented query plan Q.

Fix a query Q given by an arbitrary execution plan for Q.
Consider a sensitiveID in the output of E that is not entered
in auditID by the highest-commutative-node heuristic. In
order to prove there are no false negatives, we need to show
that the tuple t corresponding to sensitiveID is not accessed
by the query. Since the audit operator is a no-op, the output of
the instrumented plan is the result of Q. Consider a modified
plan Q′ where the audit operator is replaced with a real filter
with the predicate sensitiveID 6= ID . Since the audit
operator does not see any record with sensitiveID, the above
modified plan produces the same result as Q. Since the audit
operator can be moved to the leaf by commutativity and since
filter commutativity laws hold independent of the specific filter
predicate (so long as the columns named in the predicates are
the same), the real filter above can also be placed at the leaf
to obtain a plan Q′′ equivalent to Q′. Therefore, the latter plan
Q′′ also produces the same result as Q. Running a plan where
tuple t is excluded at the leaf is equivalent to running Q in a
database where tuple t does not exist (denoted as Q(D − t)).
Thus, it follows that the results Q(D) and Q(D − t) are the
same and tuple t is not accessed by the query.

The highest-commutative-node heuristic algorithm is de-
scribed in Algorithm 1. The algorithm takes as input an
audit expression and a query execution plan and outputs an
instrumented query plan. The audit operators are initially
placed above leaf nodes corresponding to the sensitive table
of the audit expression. They are then are pulled above other
commutative operators (e.g., selections, joins, etc.). While the
highest-commutative-node heuristic guarantees a query plan
that produces no false negatives, it can also incur false pos-
itives. However, we can show for an important but restricted
class of queries that the heuristic will produce identical results
to an offline auditing system.

Theorem 3.7: For the class of SJ queries, the instrumented
query plan obtained using the highest-commutative-node
heuristic does not produce any false positives. 1

1In Section IV-A we discuss how the attributes needed for auditing can be
propagated to the audit operator so that there are no false positives for the
larger class of select-project-join (SPJ) queries.
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Fig. 4. Instrumented query plans with audit operators.

Proof: Given the class of SJ queries, note that the highest-
commutative-node heuristic would place the audit operator
at the root of the query plan (since both selections and joins
are commutative with the audit operator). Consider an ID ∈
accessedIDs, it would be part of the output of the original
query for SJ queries and since the audit operator is placed at
the root of the plan, ID ∈ auditIDs.

Example 3.8: Consider the audit expression for Alice’s
medical record and the query plans shown in Figure 4 that
are created after executing Algorithm 1.

(a) For the query from Example 3.1, a single audit operator
is placed at the top of the query plan.

(b) The next query counts the instances of flu by age. The
algorithm adds a single audit operator below the group-by
operator.
SELECT Age, COUNT(D.Disease)
FROM Patients P, Disease D
WHERE P.PatientID = D.PatientID
AND Disease = ’flu’
GROUP BY Age

(c) For the following query which involves a nested sub-
query, two audit operators are added to the query plan, one
at the top of the query plan and another at the top of the
subquery. The audit operator cannot be pulled out of the
subquery because the data would be out of the subquery’s
scope. The ACCESSED internal state records the union of the
accessed tuples.
SELECT * FROM Patients P1
WHERE Name
IN (SELECT Name FROM Patients P2

WHERE P1.Zip <> P2.Zip )

The highest-commutative-node heuristic places audit oper-
ators at the “highest-possible” edge such that it still produces
a query plan with no false negatives. Higher placements
typically produce fewer false positives. We note that this
simplifying assumption (that operators typically filter rows)
may not apply to all workloads and the highest-commutative-
node heuristic can also yield false positives as the following
example shows.

Example 3.9: Consider a health care database and the query
plan shown in Figure 5 that finds all diseases with at least
two patients. Suppose that all patient records are sensitive. The
highest-commutative-node heuristic places the audit operator
below the group-by. Therefore, the record corresponding to
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Fig. 5. False Positives From Highest-Commutative-Node Heuristic.

Bob is added to the ACCESSED internal state. However, Bob’s
record is not accessed by the query because it is filtered by
the HAVING clause. 2

2) Placement Summary: This section addressed the ques-
tion of developing an efficient mechanism to determine if
sensitive data are accessed. To this end, we presented the
audit operator, which acts as a data viewer and applies a
simple predicate to test if sensitive data pass through it. If
the audit operator detects sensitive data, it writes the partition-
by key to the ACCESSED internal state, which can be used
by the SELECT trigger’s action to write to the log. To place
audit operators in query plans, we presented the highest-
commutative-node heuristic that attempts to reduce false
positives and guarantees no false negatives. We used heuristics
instead of attempting to solve the placement problem explicitly
because false positives vary with each plan, making it unclear
how to always find an optimal placement. For the restricted
class of SJ queries, we showed that the placement algorithm
is equivalent to the offline auditing system. We note that this
work was presented with respect to a single audit expression,
but is generalizable to multiple audit expressions that are tested
simultaneously.

IV. IMPLEMENTATION

We have prototyped SELECT triggers in a commercial
database system (Microsoft SQL Server). Our implementation
involved implementing the audit operator and extending the
query optimizer and the query execution engine to support the
audit operator.

The audit operator is derived from the standard filter oper-
ator. As a result we could reuse most of the required modules
such as transformation rules and cost estimation to integrate
the audit operator into the query optimizer. However, we did
modify the audit operator’s functionality so that it would act
as a no-op (its selectivity was also set to 1.0), and accumulate
IDs in the ACCESSED internal state.

A. Physical Audit Operator
The straightforward implementation of an audit operator

would be equivalent to a filter operator with an IN clause that
evaluates the predicate corresponding to the audit expression
E and writes the partition-by IDs to the ACCESSED internal
state. However, there are two issues with this approach.



• It requires additional I/Os to access attributes that are
referenced in the audit expression but are not required
for query evaluation. For instance, consider an audit ex-
pression that audits for patients in a particular age group.
For some queries, this attribute may not be required for
evaluating the query plan.

• It requires additional CPU to propagate attributes that
are referenced in the audit expression but again are not
required for query evaluation.

Instead, the audit expression is stored as a materialized view
of IDs (i.e., the partition-by key) and the audit operator checks
if the corresponding IDs are present in its input stream —
the set of IDs that are present are written to the ACCESSED
internal state.

1) Compiling Audit Expressions to IDs: When an audit
expression is declared, it is stored as a materialized view
of sensitiveIDs, which are maintained during updates with
standard materialized view maintenance algorithms. The ad-
vantages of this approach are as follows.
• Microsoft SQL Server uses a clustered index for rowIDs.

Because the partition-by key and the clustered index often
coincide, compiling an audit expression to the set of
corresponding keys has an important advantage that in
most cases it does not require any additional I/Os to read
the IDs (since they are read anyway).

• Less CPU is needed to propagate only the ID column
(note that this is independent of complexity as well as the
number of attributes referenced by the audit expression’s
selection condition).

• Audit operator placement works for audit expressions
with joins because the IDs are materialized from a single
sensitive table.

Beyond the leaf level nodes, the IDs will be projected
only if the operators above need them for evaluating the
original query. We implemented an optimization that forces
the propagation of IDs in the query plan at the cost of some
additional CPU (of course, IDs cannot be propagated through
operators such as group-by). Our experiments (Section V)
show that propagating IDs incur low overheads for complex
queries in the TPC-H benchmark (less than 1%).

2) Audit Operator Implementation: The audit operator es-
sentially needs to perform an intersection between the sen-
sitiveIDs of an audit expression and the input tuples. The
audit operator accomplishes this by implementing a “hash-
join” where the hash table contains the sensitiveIDs and the
hash probes are the input rows. The IDs that are joined are
marked as auditIDs. We assume that the sensitiveIDs can fit in
memory. If they cannot, standard optimizations such as bloom
filters can be used instead. Because audit operators support
the getNext interface, they can be placed at the output of any
edge in the query execution plan. As far as the rest of query
processing is concerned, an audit operator is a no-op. It outputs
all input tuples, which is necessary to guarantee the correctness
of the query results.

At the end of query execution, the ACCESSED internal
state stores the set of auditIDs. These data are then made

available to the SELECT trigger’s action. For the current
implementation, we support actions where auditIDs are written
to the log. We plan to extend this functionality in the future.

B. Optimization
The database query optimizer was modified to incorpo-

rate the highest-commutative-node algorithm. Specifically,
because of the physical audit operator implementation (Section
IV-A), the algorithm pulls-up audit operators above other
operators that commute with an IN clause on the partition-
by key.

Logically, audit operators do not influence the choice of
the optimal query plan and therefore can be inserted into the
query plan before or after optimization. However, modifying
optimized query plans proved to be difficult because of the
relative complexities of physical operators compared to logical
operators. Instead, we inserted audit operators after logical
optimization, but before physical optimization. This approach
has the benefit that the relative position of the operator
is unlikely to change much between logical and physical
optimization.

Ideally, the optimizer would generate an instrumented query
plan that produces the same query result as a non-instrumented
optimized query plan, and ensures the correct placement of
audit operators. However, because the audit operator is derived
from the filter operator, optimizations can have unexpected
side effects. Specifically, Microsoft SQL Server uses a rule
based optimizer (e.g., [2]), which contains transformation
rules that are unaware of audit operators, and these rules
can result in incorrect audit operator placements or incorrect
query results. We present two examples to demonstrate these
incorrect optimizations.

Example 4.1: Consider the following query and the audit
expression for Alice’s medical record (Alice has PatientID =
1234). We include the audit expression within the query as
bold text, but note that the condition should act as a no-op.
SELECT * FROM Patients
WHERE PatientID = 7777
AND PatientID IN (1234)
Initially, because the audit operator is derived from a

filter operator, the optimizer believed the selection condition
contained a contradiction (i.e., a tuple cannot have different
IDs) and therefore incorrectly forced an empty-set result. 2

Example 4.2: Similarly, consider the following query and
the audit expression for Alice’s medical record.
SELECT * FROM Patients P1
WHERE PatientID IN (1234) AND PatientID
IN (SELECT PatientID FROM Patients P2
WHERE P1.Zip <> P2.Zip
AND P2.PatientID IN (1234))

The optimizer simplified the subquery to a top-1 query
because it believed only Alice’s ID would be returned. 2

We extended optimizer rules to maintain the correct place-
ment of audit operators in query plans, to treat audit operators
as no-ops and to prevent audit operators from being optimized
with non-audit operators.



V. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of our
prototype system by modifying a commercial database system
(Microsoft SQL Server). We implemented the physical audit
operator as described in Section IV-A to test if sensitive data
are accessed. For each tuple the audit operator believes has
been accessed, the associated partition-by ID is written to an
audit log. We implemented both the leaf-node heuristic and the
highest-commutative-node heuristic (denoted as hcn heuris-
tic). The leaf-node heuristic serves as a reference point to
compare against. Our implementation currently supports single
table audit expressions and adds a single audit operator to the
query execution plan for an audit expression - in particular,
our implementation currently does not support queries with
self-joins. The framework can be extended to support more
complex audit expressions as well as using multiple audit
expressions in the same query execution plan. In order to
compare the false positive rates, we also implemented a client-
side offline auditing tool to compute the set of tuples accessed
by a query by suitably rewriting the query as described in [9].

The goals of the experimental evaluation are as follows.
• To measure the overhead of SELECT triggers on query

evaluation.
• To measure the overhead of SELECT triggers with re-

spect to parameters such as predicate selectivity, audit
expression cardinality (i.e., number of “individuals” being
audited for) and query complexity.

• To measure the false positive rate of SELECT triggers
with respect to the offline auditing system and their
sensitivity to parameters such as predicate selectivity,
audit expression cardinality and query complexity.

We use the TPC-H benchmark [18]. We report the results
on the 10GB version of the database. The experiments were
carried out in a Intel Xeon 2.4GHz machine with 24GB main
memory.

A. Results on a Join Query

We first present results on a micro-benchmark involving a
join query. The template of the query is shown below.

SELECT * FROM orders, customer
WHERE c_custkey = o_custkey
AND c_acctbal > $1
AND o_orderdate > $2

We used the following audit expression, which audits all
customers in a particular market segment. For the 10GB
version of the database, this segment corresponds to nearly
20% of the Customer table (around 300K customers).

CREATE AUDIT EXPRESSION Audit_Customer AS
SELECT * from customer
WHERE c_mktsegment = $3
FOR SENSITIVE TABLE customer,
PARTITION BY c_custkey

Figure 6 plots the offline audit cardinality (i.e.,
accessedIDs) and the leaf-node heuristic audit cardinality
(i.e., auditIDs) as a function of the selectivity of the
predicate in the Orders table (varying the parameter $2).

As the graph shows, the leaf-node heuristic can result in a
large number of false positives. For instance, for the data
point corresponding to a predicate selectivity of 10%, the
leaf-node heuristic estimates the number of customer IDs
accessed by the query to be around 250K customers when
the actual number is around 100K customers. As discussed
in Section III, for the class of SJ queries, the hcn heuristic
is equivalent to an offline auditor and thus does not produce
any false positives unlike the leaf-node heuristic.
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Figure 7 plots the additional overheads of using the audit
operator. We plot the additional overheads relative to the
original execution time for both heuristics. The leaf-node
heuristic always places the audit operator above the customer
scan in the join query. As the predicate selectivity of the
orderdate predicate increases, the fraction of the customer
tuples that satisfy the predicate on the acctbal column but are
filtered by the join predicate increases. Thus, the overheads
(both the CPU overheads of checking the audit condition as
well as the I/O overheads of persisting the IDs) spent on
auditing the customer tuples that are subsequently filtered by
the join correspondingly increase. As a result, the leaf-node
heuristic can incur significant overheads (around 10%) - the
hcn heuristic however checks for the audit expression at the
output of the join for the above query and is more robust to
the selectivity of the predicate.
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B. Varying audit expression cardinality

Another important parameter that influences the overheads
of SELECT triggers is the cardinality of the audit expression
(i.e., the number of accessedIDs). We fix the join query to
the instance corresponding to the 40% data point in Figure 7.
We vary the audit expression cardinality from 1 (the special
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case of single-tuple auditing) up to a million customers. Figure
8 plots the relative overheads for the hcn heuristic. As the
results indicate, the framework can audit even a large number
of customers at a reasonably small overhead. For instance, the
additional overhead incurred in auditing a million customers
is only around 2%. Of course, this result can vary depending
on the query used as well the selectivity of the predicates
involved. In the following section, we evaluate our framework
using complex queries from the TPC-H benchmark [18].

C. Results on Complex Queries
We present results on a workload of TPC-H queries. We

used a subset of seven queries from the query workload - all
queries that reference the Customer table and do not include
self-joins. The queries included complex aggregates, top-k
operators as well as joins of up to 8 tables. We fix the audit
expression to all customers in a particular market segment (as
in the previous case).
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We first compare the false positive rate of the hcn and leaf-
node heuristics against the offline auditing system. Recall that
both heuristics can lead to false positives for complex queries
that go beyond the class of SJ queries (see Section III). Figure
9 plots the offline audit cardinality (obtained using Definition
2.5) as well as the corresponding audit cardinalities obtained
using the hcn and leaf-node heuristics. The leaf-node heuristic
has high false positive rates for most queries. This is mainly
due to the fact that in the TPC-H benchmark most queries do
not have any predicates on the Customer table - as a result, the
leaf-node heuristic assumes all the customers in the particular
market segment are “accessed” while most of these tuples are
filtered by subsequent joins with other tables. In contrast, the
hcn heuristic places the audit operator at the highest point
in the query plan such that no false negatives occur while
incuring a much lower false positive rate than the leaf-node

heuristic. We note that the hcn heuristic incurs a large number
of false positives for Query 10 due to a top-k clause, and
requires an offline auditing system to verify the results.

Figure 10 plots the overheads of the audit operator (using
the hcn heuristic) for the workload. The results show that
the hcn heuristic incurs low overheads (around 1%) for the
queries in the TPC-H benchmark - note that this overhead also
includes the additional cost of augmenting the plan with IDs
(see Section IV-A2). Given that computing provenance (using
Definition 2.5) is not a feasible solution for SELECT triggers,
we think that the hcn heuristic is a mechanism that provides
an interesting trade-off between the false positive rate and the
overhead imposed on query execution.
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D. Summary

Our experimental evaluation shows that the hcn heuristic
can work well for the queries in the TPC-H workload: low
overheads when auditing a large number of individuals (around
a million customers), and low false positive rates for most of
the queries in our evaluation. In some cases, a large number
of false positives can occur (as shown for Query 10 in Figure
9). Thus, an offline auditing tool is necessary to verify the
results. We note that there are other parts of the auditing
framework that require more careful study, which we defer to
future work. In particular, we need to evaluate the effectiveness
of the framework for more complex audit expressions (beyond
single table audit expressions).

Another benefit of SELECT triggers is that they reduce
the overall auditing run time by filtering queries and their
associated accesses that must be analyzed by the offline sys-
tem. These performance gains are dependent on the database’s
workload and the trigger’s specification (i.e., the amount of
sensitive data and the action that is performed). Exploring
the scalability of the overall auditing system is an interesting
direction for future work.

VI. RELATED WORK

In designing an auditing system, we need to first determine
what it means for a query to “access” sensitive data - a form
of data provenance. Past work (see [7] for an overview) has
developed different methods to address this problem. The key
trade-off is the balance between the need to audit arbitrary
queries and the need to provide strong privacy guarantees. An
instance independent auditing approach determines if a query
accessed a tuple if there exists some database instance in which



the query’s result changes when the sensitive tuple is removed
[14]. While this type of auditing semantics provides for strong
privacy guarantees, it is not applicable for arbitrary SQL (e.g.,
groupings, aggregates and correlated subqueries).

Alternatively, instance dependent auditing semantics deter-
mine if a query accessed a tuple if the query’s result changes
when the sensitive tuple is removed from the current database
instance [1], [5], [9]. The current database instance is the
database state that existed at the time when the query was
originally executed. As a result, instance dependent systems
require a database that can reconstruct past states either using
a temporal database [8] or a “point-in-time” recover API (e.g.,
[12]). However, unlike the instance independent semantics, this
approach is applicable for arbitrary queries. It is important
to note that these semantics do not explicitly deal with the
problem of inference via updates and other implicit channels.

While data provenance can be computed efficiently for
simple classes of queries, the only published technique for
provenance computation for complex queries [6] can add a
significant overhead (up to of a factor of 5x) for queries in
the TPC-H benchmark. Therefore, data auditing is typically
deferred to an offline analysis phase.

There has been prior work on a declarative approach for data
auditing. Oracle Fine Grained Auditing [17] also provides a
declarative interface in which any user can specify an audit
expression with single table predicates (e.g. Name = ‘Alice’).
However, they do not adopt an execution-based approach, but
use a static analysis approach to generate an audit log. The
query optimizer determines if the query’s selection condition
logically intersects with the audit expression’s selection con-
dition (i.e., using instance independent auditing semantics).
If such an intersection exists, the query is deemed to have
accessed the sensitive data. The following example illustrates
this auditing approach.

Example 6.1: Consider the audit expression DeptName =
‘Dermatology’ on the table DepartmentNames(DeptID, Dept-
Name). If we assume that the department ID of the ‘Oncology’
department is 10, then both of the following queries are
identical.
SELECT * FROM DepartmentNames
WHERE DeptName = ’Oncology’

SELECT * FROM DepartmentNames
WHERE DeptID = 10

The static analysis approach would determine that the
first query does not reference the audit expression since the
intersection is empty. However, it cannot infer the same for
the second query, and would incorrectly assume that the query
could have accessed the audit expression, leading to a false
positive. Our framework using audit operators does not incur
a false positive for the above query. 2

While the static analysis approach is efficient, it can produce
false positives as demonstrated by the example. In fact, this
approach would produce false positives for almost all of
the queries (with the exception of Query 3) used in our
experimental evaluation. Thus, SELECT triggers offer a more
robust solution for online auditing.

There is prior work on weaker semantics for provenance
computation [19]. However, the work in [19] requires the
notion of operator inverses (where a user registers user-defined
functions to compute the weak-inversion) and is not applicable
for general SQL. In contrast, our focus in this paper is on a
light-weight mechanism for computing weak-inverses that is
applicable for complex SQL queries (including sub-queries,
aggregates, etc.).

VII. CONCLUSIONS

There are many scenarios that require row-level auditing
support for SELECT queries that cannot be supported by
existing database triggers. In this paper we introduce the notion
of SELECT triggers as an enabler for data auditing. The
key challenge in integrating SELECT triggers in a database
system involves engineering a low overhead mechanism while
ensuring the semantics are rich enough to capture the subtlety
of data access using SQL queries. We present a design which
allows for the possibility of false positives for complex queries
using a light-weight mechanism termed an audit operator and
have prototyped our framework in a commercial database sys-
tem. Our experiments with the TPC-H benchmark show that
our framework yields low false positive rates for most queries
while incurring low overhead. We defer a more thorough
performance evaluation and possible extensions to optimize
offline auditing performance with SELECT triggers to future
work.
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